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Abstract

Given a measure equivalence coupling between two finitely generated groups, Delabie,
Koivisto, Le Maitre and Tessera have found explicit upper bounds on how integrable the
associated cocycles can be. These bounds are optimal in many cases but the integrability
of the cocycles with respect to these critical thresholds remained unclear. For instance,

a cocycle from ZF* to ZF can be L? for all p < £ but not for p > k-i-uz’ and the case

k44
p= kLM was an open question which we answer by the negative. Our main result actually
yields much more examples where the integrability threshold given by Delabie-Koivisto-Le
Maitre-Tessera Theorems cannot be reached.
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1 Introduction

Measure equivalence is an equivalence relation on countable groups introduced by Gromov as
a measured analogue of quasi-isometry. A first example of measure equivalent groups is given
by two lattices in the same locally compact group.

Another source of examples is provided by orbit equivalence. Two groups I' and A are
orbit equivalent if there exist two free probability measure-preserving I'- and A-actions ar and
ap on a standard probability space (X, ), having the same orbits. This yields measurable
functions crp: I' x X — A and ecpor: A x X — T describing the distortions on the orbits,
called the cocycles and defined almost everywhere by the equations

ar(v)z = aalera(y,2))z and ax(Mz = ar(ea,r(A, z))z.

More generally, the notion of measure equivalence also yields cocycles cra: I' x Xy — A and
cear: A x Xp — T, where (Xr, px;) and (X4, px,) are probability spaces arising from the
measure equivalence coupling between the groups (see Section .

When the two groups are finitely generated, a stronger notion called L' measure equivalence
can be defined. It requires that the measurable functions [cr,a(7,-)[g, and [ear(A,-)]g. are
integrable for every v € I' and A € A, where |.|g. and |.|s, respectively denote the word-length
metrics with respect to some finite generating sets Sp and Sy of the groups. This definition
does not depend on the choice of St and Sj and we simply say that cr A and cp r are integrable.
Many rigidity results have been uncovered in this context (see e.g. [BES13] and [Ausl6]). Most
of the time, these results tell us that L! measure equivalence captures the geometry of the



groups, in contrast to Ornstein-Weiss Theorem [OWS80| which states that all infinite countable
amenable groups are measure equivalent.

To get finer rigidity results among finitely generated groups, Delabie, Koivisto, Le Maitre
and Tessera [DKLMT22] introduced more general quantitative restrictions on the cocycles.
Given positive real numbers p and ¢, we say that two finitely generated groups I' and A
are (LP,L9) measure equivalent (resp. (LP,L%) orbit equivalent) if there exists a measure
equivalence (resp. an orbit equivalence) between them and the associated cocycles cr p and
car are respectively LP and L9, i.e. the real-valued measurable functions |cpa (7, ')|SA and
lear (A, -)|SF are respectively LP and L? for every v € I and A € A. We also replace LP or L¢
by L° when no requirement is made on the corresponding cocycle.

We can also define (i, 1)-integrability measure equivalence (resp. orbit equivalence) for
non-decreasing maps ¢, 9: Ry — R, (see Definition . In particular, L? means that we
consider the map x > zP.

In the case of the groups Z?, for d > 1, Delabie, Koivisto, Le Maitre and Tessera prove that
there is no (L?,L%) measure equivalence coupling from Z**+¢ to Z* for p > kLM (IDKLMT22,
Corollary 3.4]). On the other hand, they explicitly build a measure equivalence from ZF+ o
ZF which is (LP, L) for every p < kLM (IDKLMT22| Theorem 1.9]).

k
The existence of a (L%+,L% measure equivalence coupling from ZF** to Z* remained
unclear (see also [DKLMT22, Question 1.10]). Our contribution provides a negative answer
to this question (see Corollary , thus yielding the following complete description:

Theorem A (see Theorem . If k and ¢ are positive integers, then there exists a (LP,L0)

measure equivalence coupling from ZF+ to ZF if and only if p < kié'

The absence of measure equivalence coupling from Z*+¢ to ZF with the critical integrability

(L%”,LO) was the initial goal of the paper. As we will see later in this introduction, this is
actually a particular case of more general statements (see Theorems |B|and @

Our result relies on the following key lemma (Lemma in the easier case I = Z*+¢ and
A = 7ZF): given a measure equivalence coupling from Z**¢ and Z*, if a cocycle is @-integrable,
then it is ¢-integrable for another non-decreasing map ¥ : R, — R such that ¥ (z) = O(¢(x))
does not hold as x goes to +0o0. If now we assume that the cocycle czk zx+¢ is p-integrable

where p(x) = :ck%l, we can combine this with a more precise version of [DKLMT22, Corollary
3.4]: by their Theorem 3.1, we must have ¢(x) = O(p(x)), a contradiction, thus proving our
result. It is interesting to note that while the statement does not mention p-integrability, its
proof crucially uses it.

This key lemma is a natural adaptation of the following elementary, yet fundamental fact.

Fact. Let (up)neny be a sequence of non-negative real numbers which is summable. Then
there exists a sequence (Vn)nen 0f mon-negative real numbers which is summable and such
that u, = o(vy,).

Proof of the fact. We can find an increasing sequence (Ng)r>1 of positive integers satisfying
N1 =0 and Z:;Nk, Uy < 1%3 for every k = 2. Then for every integer n = 0, we define v, = ku,
if N <n < Ngi1. We have

+00 +00 Np41—1 to
Yo=Y 3 hu <Y <t
n=0 k=1 n=Nj k=1
and u, = o(vy). O



Let us now present generalizations to other groups, using the isoperimetric profile (Theo-
rem [B) and then the growth (Theorem @ First, recall that given non-decreasing real-valued
functions f and g defined on a neighborhood of +c0, we say that f is asymptotically less than
g, denoted by f < g, if there exists a constant C' > 0 such that f(xz) = O (¢(Cx)) as x — +o0.
We say that f is asymptotically equivalent to g, denoted by f =~ g, if f < gand f > g. The
asymptotic behavior of f is its equivalence class modulo =.

Given a finitely generated group I', its isoperimetric profile is a real-valued function jir
defined on the set of positive integers and given modulo & by the formula

jir(z) ~  sup 14
7 AcT|Al<z |5A|
where 0A == SrA A A and Sr is a finite generating subset of I'. It has been computed for many
groups, for instance j; za(7) ~ 2/ [Coul0], J1,zezyz(x) = logz [Ers03|, where (Z/2Z)1Z is
a lamplighter group (the definition is recalled in Section . Note that it is an unbounded
function if and only if the group is amenable. It can thus be interpreted as a measurement
of amenability: the faster it goes to infinity, the "more amenable" the group is. We refer the
reader to [DKLMT22| for more details on the isoperimetric profile and more generally the
fP-isoperimetric profile.
Now we state the theorem of Delabie, Koivisto, Le Maitre and Tessera on the behaviour
of the isoperimetric profile under quantitative measure equivalence.

Theorem 1.1 ([DKLMT22, Theorem 1.1]). Let o: Ry — Ry be a function such that ¢ and
t — t/o(t) are non-decreasing, let I' and A be finitely generated groups. Assume that there
exists a (o, L0)-integrable measure equivalence coupling from T to A. Then their isoperimetric
profiles satisfy the following asymptotic inequality:

Yo JiA X JIr-

If ji A is injective, then ¢ o j1 A < j1,r means that there exists a constant C' > 0 such that
the following holds as = goes to +oo:

p(z) = O(j1,r(Cir (@), (1)

so Theorem provides upper bounds z — jl’r(le_}\(x)) for C' > 0. In order to generalize

k
our first contribution ("there is no (L#+,L%) measure equivalence coupling from ZF¢ from
ZF") to other groups, we must pay attention to a few obstacles which do not appear in the
case I' = ZF*¢ and A = ZF.

e The isoperimetric profile of a finitely generated group A is not necessarily injective, so
is not well-defined in full generality. But when studying this function, we only take into
account its asymptotic behaviour. Moreover, we will check that it suffices to consider an
injective function hp with the same asymptotic behavior (the existence of such a map is

granted by Remark [I.2).

e Given two different positive constants C' and C’, we do not know if the functions
j17p(Cj1_7/1\(.)) and j171“(Clj1_7/1\(.)) have the same asymptotic behavior, so Theorem 1.1
does not provide a precise upper bound of ¢ a priori. This is the reason why we wi
assume that the isoperimetric profile of I" satisfies j; r(Cz) = O(j1,r(x)) for every C' > 0.
For other technical reasons arising from the existence of a constant in the definition of
"p-integrability" (see Definition , we will also require this hypothesis on jir o jl_/lx
These requirements motivate Assumptions and in Theorem |B| below.



e In Lemma where we build a new map 1 from the original one ¢ = ji r ojf}\ (for the

case I' = ZF** and A = ZF, see the paragraph after the proof of the elementary fact),
we need ¢ to be sublimeauﬂ7 hence Assumption in Theorem .

Hence, a first generalization is the following.

Theorem B. Let I' and A be finitely generated groups. Assume that there exist a non-
decreasing function hr and an increasing function hp satisfying hr =~ jir, ha = jia and
the following assumptions as x — +o0:

he(x) = o (ha(z)), (2)
VC > 0, hp(Cx) = O (hr(z)), (3)
VC >0, hrohy'(Cz) = O (hr o hy'(z)). (4)

Then there is no (hr o hxl,LO)—mtegmble measure equivalence coupling from T to A.

Remark 1.2. The isoperimetric profile of a finitely generated group I is always asymptotically
equivalent to an increasing function hr. For instance, if j; r satisfies

0< jl,p(n - 1) < jl,p(n) =...= jl,[‘(’I’L + k- 1) < jLF(TL + k)
for some positive integers n and k, then we can set

hr(n + 1) = %m(n) + %min (rr(n + k), 2j1.0(n)
for every i € {0,...,k — 1}. We do not provide the details.

It is straightforward to check that the equivalence relation = preserves Assumption ({3
for a non necessarily injective function. Moreover satisfying Assumptions and is also
preserved under this equivalence relation, as well as satisfying Assumptions , and
when the inverse of one of the functions is well-defined.

Question 1.3. Does the isoperimetric profile of a finitely generated group always satisfy
Assumption (3)? In the case jir(z) = o(j1,a(z)), does there always exist a pair (hr,ha) of
functions satisfying the assumptions of Theorem

The following corollary allows us to answer a question of Delabie, Koivisto, Le Maitre and
Tessera (see [DKLMT22, Question 1.2]|) by the negative for many of finitely generated group T

Corollary C (see Corollary . Let T be a finitely generated group which is not virtually
cyclic. Assume that its isoperimetric profile j1 r satisfies

VC >0, jir(Cz) =0 (jir(z)) as x — 4. (5)

Then there is no (jir, L9)-integrable measure equivalence coupling from T to Z.

!This is necessary to assume that Ji,r ojl_,}\ is sublinear. Indeed, we cannot apply the same strategy in the
case I' = Z and A = Z?, since Escalier and Joseph have built a measure equivalence coupling from Z to Z>
which is (L, L?) for every p < 3 (not yet published work).



Given an increasing function satisfying a mild regularity condition, Brieussel and Zheng [BZ21]
build a group whose isoperimetric profile is asymptotically equivalent to this function. It turns
out that this regularity condition implies our condition (5)) (see Section . Moreover, if T is
such a groupﬂ, it follows from the work of Escalier [Esc24] that there exists an orbit equiva-
lence from I' to Z which is almost (jq,r, L%)-integrable, thus providing a complete description
similar to Theorem [A| (see Theorem {4.2)).

Explicit constructions of orbit equivalences in [DKLMT22| show that the upper bound
given in Theorem is sharp for other groups than Z¢, such as lamplighter groups or iterated
wreath products. The existence of a measure equivalence coupling with this critical threshold
remained unclear and our Theorem |B| enables us to answer by the negative. We refer the

reader to Theorems and for precise statements.

Another rigidity result in [DKLMT22| deals with the notion of volume growth. Given a
finitely generated group I' and finite generating set St of I', we define

Ve(n) = [{m...9m |7, m €S U (Sr) ! U{er}}]

for every positive integer n, where er denotes the identity element of I'. As for the isoperimetric
profile, we extend Vr to a continuous and non-decreasing function. The volume growth of ' is
the asymptotic behavior of V, it does not depend on the choice of St, nor does its extension
to R,. We say that I" has polynomial growth of degree d if Vr(z) ~ 2?. Finally, note that the
volume growth is increasing but the isoperimetric profile may fail to be injective.

Theorem 1.4 ([DKLMT22, Theorem 3.1]). Let ¢ be an increasing, subadditive function such
that p(0) = 0, let T' and A be finitely generated groups. Assume that there ewists a (i, L0)-
integrable measure equivalence coupling from T to A. Then

VF < VA O 90717
where 1 denotes the inverse function of .
With the same strategy as Theorem [B] we get the following statement.

Theorem D. Let ' and A be finitely generated groups. Assume that there exist two increasing
functions hr and hp satisfying hr = Vi, ha = V) and the following properties as x — +o0:

hfl(x) =0 (hxl(a:)) ) (6)
VC >0, hp'(Cz) = O (hi''(2)) . (7)
VC >0, hp' o ha(Cx) = O (hp' o ha(z)) . (8)

Then there is no (hli1 o hp, L0)-integrable measure equivalence coupling from T to A.

We will prove Theorems [B]and [D]in Section [3]and give the main applications in Section

More general statements of Delabie, Koivisto, Le Maitre and Tessera deal with asymmetric
weakenings of measure equivalence coupling: measure subgroup, quotient and sub-quotient
couplings. We can still apply our ideas to these generalizations.

Theorems [B] and [D] still hold in the context of quantitative orbit equivalence, since the
existence of a (¢, ¥)-integrable orbit equivalence from I' to A is equivalent to the existence of
a (¢, 1)-integrable measure equivalence coupling with equal fundamental domains.

*We call it a Brieussel-Zheng group, although their construction is more general.
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2 Quantitative measure equivalence

The groups T' and A are always assumed to be finitely generated. By a smooth action of a
countable group I', we mean a measure-preserving I'-action on a standard measured space
(Q, 1) which admits a fundamental domain, namely a Borel subset X of {2 that intersects
every I'-orbit exactly once.

Definition 2.1. A measure equivalence coupling between I" and A is a quadruple (2, X1, Xy, )
where (€, 1) is a standard Borel measure space equipped with commuting measure-preserving
smooth I'- and A-actions such that

1. both the I'- and A-actions are free;
2. Xr (resp. Xa) is a fixed fundamental domain for the I'-action (resp. for the A-action);
3. Xt and X, have finite measures.

We will always use the notations v * z and A x x (with y € T', A € A, z € Q) for these smooth
actions on ). The notations 7 - z and A - x refers to the induced actions that we now define,
as well as the cocycles.

Definition 2.2. A measure equivalence coupling (2, X, Xy, p) between I" and A induces a
finite measure-preserving I'-action on (Xa, px,) in the following way: for every v € I' and
every © € X\, v-x € X, is defined by the identity

(Axvysx)n Xp ={y-z},

it is unique since Xy is a fundamental domain for the smooth A-action.
This also yields a cocycle cpa: I' x X, — A uniquely (by freeness) defined by

cra(y, ) s ysx=7y-x,

or equivalently cra(y,z) = v * 2z € X,, for almost every z € Xj and every v € I We
similarly define a finite measure-preserving A-action on (Xr, ux,.) and the associated cocycle
ear: A x Xp - T

Remark 2.3. The cocycle cra: I' x Xp — A satisfies the cocycle identity

Vy1,72 €I, VYo e Xa, cra(yiv2, @) = cra(y1, 72 - 2)era (e, x).

Definition 2.4 (Delabie, Koivisto, Le Maitre and Tessera [DKLMT22]). Let ¢: R. — R be
a non-decreasing map. Given a measure equivalence coupling between I' and A, we say that
the cocycle crp: I' x XA — A is p-integrable if for every v € I', there exists ¢y > 0 such that

J o <|CF,A(%JU)|SA> diix, () < +00
XA

Cy



where Sy is a finite generating set of A and for every A, |A|g, denotes its word-length metric
with respect to Sy, defined by

Als, =min{n =0]3IA1,..., \p€ Sy u(Sa) P ufeal, A=A . A}
We define @-integrability for ca r in a similar way.

Remark 2.5. Defining ¢-integrability for the cocycle cra with the use of constants c, is
necessary because we need the following properties:

e this notion of y-integrability does not depend on the choice of the finite generating set
of A, since for any finitely generated sets S, Sy, there exists a constant C' > 0 such that

1
SPlg < Nlg, < CPg,

for every A € A;
e if v = ), then -integrability and i-integrability are equivalent notions;

e to prove that the cocycle cra: I' x Xy — A is ¢-integrable, it suffices to check the

finiteness of | ( |
CF,A Y, T S
| e () djix, (2)
XA Cy

for every element 7 in a finite generating set of I". This follows from [DKLMT22|
Proposition 2.22].

Definition 2.6 (Delabie, Koivisto, Le Maitre and Tessera [DKLMT22|). A measure equiva-
lence coupling (2, X1, Xa, 1) between the groups I' and A is a (¢, 1)-integrable measure
equivalence coupling from I' to A if cp p: I' x XA — Ais p-integrable and cor: Ax Xt — T
is 1-integrable.

For p > 0, we write L? instead of ¢ or v if we consider the map t + t?, and we write L°
when no requirement is made on the cocycle. For example, the measure equivalence coupling
is (¢, LP)-integrable if cr 5 is p-integrable and ca r is in LP(Xy, px, ); it is (L?, L%)-integrable
if era is LP(X, ). Finally, a measure equivalence coupling is p-integrable if it is (¢, ¢)-
integrable.

Note that a (p,1)-integrable measure equivalence coupling from I' to A is a (¢, )-
integrable measure equivalence coupling from A to T'.
3 Proof of the main results

We now prove Theorems [B] and [D] The key result is Lemma [3.2] which uses Lemma [3.1]

Lemma 3.1. Let z € R and 0: [z, +0) — R be a continuous sublinear function. If y is a real
number satisfying y < 0(t) for every t € [x,4+0), then the set

E(x,y,0) = {t > x| Vse|[x,t],0(s) = Gsft)_—wy(s — ) +y}

15 not bounded above.



Proof of Lemma (3.1 Let us consider the continuous maps a : ¢t € (x,400) — Rand m : t €
(z,+00) — R defined by

= and m(t) = Sler(lig]a(s).

Note that the set E(z,y,0) is equal to {t > = | m(t) = a(t)}. Let us also define the set
E' = {te (x,+0) | Vse (z,t), m(s) >m(t)}.
By the assumptions, the non-increasing map m satisfies the following properties:
e m(t) > 0 for every t € (z, +0);

o mlt) o, 0

e if tisin E’, then we have m(t) = a(t).
Therefore the set E’ is not bounded above and is included in E(x,y,0). O

Lemma 3.2. Let p: Ry — R, be a continuous, sublinear and increasing function. Given
an integer £ = 1 and a probability space (X, u), let f1,..., fr: X — N be measurable maps
satisfying

| etranante) <+
for everyie {1,... . ¢}. Then there exists a subadditive map 1: Ry — R such that 1(0) =0,
Y and t — t/1(t) are non-decreasing, and

1. o(z) = o((zk)) for some increasing sequence (xy)k=0 of non-negative real numbers
tending to +o0;

2. for every i€ {1,... 4},
fxlb(fi(x))du(x) < +o0.

Proof of Lemma[3.2 For every n > 0 and every i € {1,...,¢}, let us define the non-negative

real number u!) = em)u({fi = n}). For every i € {1,...,¢}, the sequence (u@)@o is

summable since

DMuld) = 3 pn)u({fi = n}) = J o(fi(2))dp(x) < .
n=0 n=0 X

Let (Ng)k>1 be an increasing sequence of positive integers satisfying N1 = 0 and

+o _ 1
VE=2, Vie{l,....&}, > ugpgﬁ.
77,=Nk

Then for every integer n > 1, we define K, := k if N < n < Ngi1. The sequence (K, )n>1
tends to 400 and the sequences (Knug)),@l are summable (see the proof of the fact in the
introduction).

We inductively build an increasing sequence (zy)r=o of integers satisfying xg = 0 and
xp = Niiq for every k > 1, a decreasing sequence (ax)g=o of positive real numbers, a sequence
(br)k=0 of non-negative real numbers satisfying by = 0, and a continuous piecewise linear map
¥: Ry — Ry satisfying the following properties:



e for every k > 0, for every t € [z, zr11], ¥(t) = b + art and Y (t) < (kB + 1)e(t);
o for every k = 0, ¢¥(zy) = kp(zy).
Let us set zg :== 0, 1 == Na, ag = ¢p(N2)/Na, by = 0 and for every t € [0, Na],

©(N2)
t) = t.
vt = I
Given an integer k > 2, assume that we have already defined 0 = 29 < 21 < ... < Tp_1q,
ap > ...>ap 2, bo,...,bg_o and the map v on [0, z;_1]. By the assumptions on ¢ and since

(rr1) = (k = Dp(rr1) < kp(rr1),

we can apply Lemma to x = xp_1, y = VY(rr_1), 8 = k x ¢. We choose x €
E(xg—1,Y(zk—1), k x ¢) sufficiently large so that

® T = Npiq;

e qj_1 = ko(zr) — (@) is less than ap_o,

Tk — Tk—1

the last condition being possible since ¢ is sublinear. Let us define

b1 =Y(xK1) — W(xxz)__i(:ikl)%kl.

We then extend ¢ on [zj—_1, zk] by setting

ko(xy) — Y(zr 1)
Tk — Tk—1

P(t) = bp—1 + a1t = (t = zp—1) + Y(xp-1),
so that v satisfies ¥(zy) = kp(xg) and (t) < kp(t) for every t € [xg_1, x| (by definition of
the set E(zk_1,%(zk_1),k x ¢)). The real number by is necessarily non-negative since we
have by_o + agp_oxp_1 = bp_1 + ap_1xk—1 With ar_1 < ap—s and by_o = 0.
Let us prove that v satisfies the desired conditions. The map 1 is increasing since the
real numbers a; are positive. It is easy to prove that ¢(xr) = o((xr)). Since the map
€ (0, +w) is non-decreasing if @ > 0 and b > 0, we get that the map ¢ — ¢/1(t)

at+b
is non-decreasing. We build ¢ as a concave and increasing map satisfying 1(0) = 0, so 1 is
subadditive. Finally, given an integer ¢ € {1,..., ¢}, we have
+00 T41—1
2 pu{fi=n}) =D, D, vmp{fi =n})
n=xi k=1 n=x

+00 Tpp1—1

< D k+Dpmu({fi =n})

k=1 n=x
+00 Tp41—1

Z Z Kpo(n)p({fi = n})

k=1 n=zg

+
= Y Kul)) <o,
n=1



where the second inequality follows from the inequalities k + 1 < K, for every integers n and
k satisfying n > xj, (since we have x = Ni,1). The equality

r1—1

Lw(fi(a:))dw) = Y vmp{fi =n}) + D Ym)u{fi = n})
n=0

n=xy

implies that the integral is finite. O

Proof of Theorem[Bl. Suppose that there exist a non-decreasing function hr and an increasing
function hp satisfying hr =~ jir, ha = j1,a and the following assumptions as x — +00:

hr(x) = o (ha(z)), (9)
VC > 0, hr(Cz) = O (hr(z)), (10)
VC >0, hr o hy'(Cz) = O (hr o hy'(z)). (11)

Let us assume by contradiction that there exists a (hpth1 , L%)-integrable measure equivalence
coupling (€, X1, Xa,u) from I' to A. Let us fix finite generating sets Sp of I' and Sy of A.
We write St = {y1,...,7¢}. Forevery i€ {1,...,¢}, there is a constant ¢,, > 0 such that

Cr A\Yi, T
J hr o hy*! <|F’(7)|SA> dpx, (x) < +o0.
Xa Cvi

Using Assumption for C = ¢y, we may and do assume that c,, = 1 for every ¢ €
{1,...,¢}. We now apply Lemma [3.2[to ¢ = hr o th (¢ is sublinear by Assumption (9)),
(X, p) = (Xa, px,) and fi: z — |CF7A(%‘7$)|5A- We thus get that (€, X1, Xa, i) is a (10, LY)-
integrable measure equivalence coupling from I to A, for some map ¢: R, — R, satisfying
the following properties:

(A) hrohy!(zx) = o(¢(wx)) for some sequence (2x)=0 of non-negative real numbers tending
to +o0;

(B) ¢ and t — ﬁ are non-decreasing;

(C) 1 is subadditive;
If we have
hF z 1/) © hA7 (12)

namely ¥ (x) = O (hp(C’th(m))) for some constant C' > 0, then we get a contradiction with

Assumption and Property Now it remains to prove Inequality .
First, Property and Theorem imply that

Jir = Yo g1,

which means that there exist constants C, D > 0 such that ¢ (j1 a(z)) < Dj; r(Cx) for every
x = 0. Secondly there also exist constants C1, Ca, D1, D > 0 such that hy(z) < D1j14(Crx)
and ji,r(z) < Dahr(Caz) for every > 0. Moreover, by Property and the monotonicity
of 1, we have ¢(cz) < [c|y(x) for every ¢ > 0. Finally, this gives

P(ha(z)) < P(D1j1,a(Cr))
< [Daly(j1,a(Crz))
< [D1]|Djip(CChz)
< [Dl]DDghp(C’Cngx)
and we get Inequality . O

10



Proof of Theorem[D, This is the same proof as Theorem [B] except that we get a contradiction
with Theorem using the fact that Lemma yields a map ¢ which can be increasing and
subadditive and satisfy ¥(0) = 0. Moreover we similarly prove that V¢ > Vj o+ ~! implies
hr >= hp o 'Lﬁfl. O

4 Applications

4.1 Coupling from a finitely generated group to Z

Corollary 4.1. Let I" be a finitely generated group which is not virtually cyclic. Assume that
its 1soperimetric profile jir satisfies

VO >0, jir(Cz) =0 (jir(z)) as x — 4o0. (13)
Then there is no (jir, L9)-integrable measure equivalence coupling from T to Z.

Proof of Corollary[{.1 A group T' is not virtually cyclic if and only if j; r(z) = o(z). This
is a consequence of the Coulhon Saloff-Coste isoperimetric inequality [CS93), Theorem 1] and
the fact that the volume growth of such a group is at least quadratic if it is not virtually
cyclic (see e.g. [Manlll Corollary 3.5]). We then apply Theorem [Bf and Remark to get

Corollary [4.1] O

In |[BZ21, Theorem 1.1| Brieussel and Zheng prove that for any non-decreasing function
f: Ry — Ry such that x — x/f(z) is non-decreasing, there exists a group I' such that
Jir R~ f{)(iig’ we call it a Brieussel-Zheng group (although their construction is more general).

Defining the map F' = s>, the monotonicity of f (resp. of x — z/f(x)) implies that
F/log is non-increasing (resp. F' is non-decreasing) and the converse is true. Therefore,
any non-decreasing function F': [1,00) — [1,00) such that F'/log is non-increasing is the
isoperimetric profile of a group. This equivalent statement was already noticed in [DKLMT22]
Theorem 4.26].

From this we deduce that the isoperimetric profiles provided by Brieussel and Zheng satisfy
Assumption . Indeed, let F' be a non-decreasing function such that F'/log is non-increasing,
and let C be a positive constant. If C' < 1, then the monotonicity of F directly implies the
inequality F(Ct) < F(t). If C > 1, we get

F(Cx) - F(x)
log (Cx) ~ log ()

log (Cx)
log (z) ’

by monotonicity of F'/log, so we have F|(Cx) < F(x)
than 2F(x) when z is large enough.

As mentionned in the introduction, Escalier [Esc24, Theorem 1.7] proves that for everyﬁ
Brieussel-Zheng group I' mentionned above, there exists an orbit equivalence coupling from I'

to Z which is (¢, LY)-integrable for all ¢ > 0, where o (z) = %

where the right-hand side is less

Hence, we deduce
the following.

Theorem 4.2. Let I' be a Brieussel-Zheng group and p > 0. Then there exists a ((j1,r)?,L°)-
integrable measure equivalence from I' to Z if and only if p < 1.

% Actually, the statement of Theorem 1.7 in [Esc24] is the following : given a non-decreasing function F such
that F'/log is non-decreasing, there exists a group I' such that ji,r &~ F' and there exists an orbit equivalence
coupling from T" to Z which is (., exp oF oexp) for every € > 0, where ¢, () = F(x)/(log F(z))**°. The group
I' is in fact a Brieussel-Zheng group and the proof of the theorem shows that the existence of such an orbit
equivalence holds for every such groups.
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4.2 Coupling between groups of polynomial growth

Corollary 4.3. Assume that I' and A have polynomial growth of degree b and a respectively,
with b > a. Then there is no (La/b, L%) measure equivalence coupling from T to A.

Proof of Corollary[f.3 The isoperimetric profiles satisfy jir(z) ~ '/ and jia(z) ~ 2!/
(see [CS93|, Theorem 1]), so the corollary follows from Theorem [B] O

As mentionned in the introduction, Delabie, Koivisto, Le Maitre and Tessera [DKLMT22]
explicitly build an orbit equivalence in the special case of the groups Z% for d > 1, and then
show that there exists a measure equivalence coupling from Z° to Z® (with b > a) which is
(L?, L%)-integrable for every p < a/b. But the existence of a (L%, L9)-integrable coupling
remained unclear. Our Corollary then gives the following complete description.

Theorem 4.4. Given positive integers b > a, there exists a (LP,L°) measure equivalence
coupling from ZP to Z* if and only if p < a/b.

4.3 Lamplighter groups

Let G and F be two countable groups and El—)geG F be the subgroup of F& consisting of all

functions with finite support*l We define the action of G on @ gec b as follows. For every
g€ G and every f € (—BgeG F, the function g - f € (—BgeGF is defined by:

Vo' €G, (g-f)d) = flg'9).

Then the wreath product F'! G is the semi-direct product

F1G = <@F> % G.

geG
When F is a non-trivial finite group, F'! G is also called a lamplighter group.

Corollary 4.5. Assume that G and H have polynomial growth of degree b and a respectively,
with b > a, and let F' and K be non-trivial finite groups. Then there is no (L“/b,LO) measure
equivalence coupling from F1G to K1 H.

Proof of Corollary[{-5. The isoperimetric profiles satisfy j; ma(x) ~ (logz)'/® and j; () ~

(log )Y/ (see [Ers03, Theorem 1]), so the corollary follows from Theorem . O

In the case F = K, G = Z° and H = 7%, using the notion of wreath product for measure-
preserving equivalence relations, Corollary 7.4 in [DKLMT22| implies that there exists a
(L, L% measure equivalence coupling from F 1 Z? to F 1 Z® for every p < a/b. Combined
with Corollary [4.5] this yields the following theorem.

Theorem 4.6. Given positive integers b > a, there exists a (LP,L°) measure equivalence
coupling from FUZP to F1Z% if and only if p < a/b.

Corollary 4.7. Assume that G and A have polynomial growth of degree b and a respectively,
with b > a, and let F be a non-trivial finite group. Then there is no (logl/b,LO)—mtegmble
measure equivalence coupling from F 1 G to A.

“The support of a function f: G — F is the set {g€ G | f(g) & er} where e is the identity element of F.
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Proof of Corollary[{.3. The isoperimetric profiles satisfy j; ma(z) ~ (log )Y’ and ji A (z) ~
2/ (see [Exs03, Theorem 1] and [CS93, Theorem 1]), so we are done by Theorem . O

In the case G = Z and A = Z, it is shown in [DKLMT22, Proposition 6.20] that there
exists a (log?, LY)-integrable measure equivalence coupling from F 7 to Z for every p < 1
(this statement deals with F' = Z/mZ but remains true for any finite group), and Corollary [4.7]
completes this result.

Theorem 4.8. Given a finite group F, there exists a (log?, LY)-integrable measure equivalence
coupling from F 17 to Z if and only if p < 1.

4.4 Iterated wreath products

Given an integer £ > 1 and a finite group F, we define groups H, (k) inductively as follows:
Ho(k) = ZF and H, (k) = F 1 H,(k). Given a positive integer n, the map log®" denotes the
composition logo...olog (n times).

Corollary 4.9. o Ifb> a, then there is no (LY°,L9) measure equivalence coupling from
H,(b) to Hy(a).

o Given integers d,k > 1, there is no ((log®™)V/* L9)-integrable measure equivalence cou-
pling from H, (k) to Z°.

Proof of Corollary[{.9 The isoperimetric profiles satisfy ji g, x)(z) ~ (log™" z)'/F (see [Exs03]
Theorem 1]), and j; z4(z) ~ 2. Then the corollary follows from Theorem . O

Using the notion of wreath products of measure-preserving equivalence relations, it is
proven in [DKLMT22, Corollary 7.5] that there exists a (L?, L?) measure equivalence coupling
from H,(b) to Hy(a) for every p < a/b. Moreover the composition of couplings yields a
((log®™)?, L) measure equivalence coupling from H, (1) to Z for every p < 1 (see [DKLMT22,
Corollary 7.6]). Our results allow us to complete these observations.

Theorem 4.10. Given positive integers b > a, there evists a (LP,LY) measure equivalence
coupling from H, (b) to Hy(a) if and only if p < a/b.

Theorem 4.11. Given integers d,k > 1, there exists a ((log®™)P, L?)-integrable measure equiv-
alence coupling from Hy, (1) to Z if and only if p < 1.

Remark 4.12. All the measure equivalence couplings provided in [Esc24] and [DKLMT22| and
that we have mentioned in Section {lactually come from a construction of orbit equivalences be-
tween the groups, with the same integrability for the cocycles. Then TheoremsH.4] [4.6]
and remain valid in the context of quantitative orbit equivalence.
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